Produktnummer:
182f3aed643cf54a688c6cffbc75193f65
Themengebiete: | Credibility Theory Fuzzy Sets Random Fuzzy Theory Rough Sets Uncertainty Theory |
---|---|
Veröffentlichungsdatum: | 07.11.2011 |
EAN: | 9783642139581 |
Sprache: | Englisch |
Seitenzahl: | 350 |
Produktart: | Gebunden |
Herausgeber: | Liu, Baoding |
Verlag: | Springer Berlin |
Untertitel: | A Branch of Mathematics for Modeling Human Uncertainty |
Produktinformationen "Uncertainty Theory"
Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms. Uncertainty is any concept that satisfies the axioms of uncertainty theory. Thus uncertainty is neither randomness nor fuzziness. It is also known from some surveys that a lot of phenomena do behave like uncertainty. How do we model uncertainty? How do we use uncertainty theory? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory, including uncertain programming, uncertain risk analysis, uncertain reliability analysis, uncertain process, uncertain calculus, uncertain differential equation, uncertain logic, uncertain entailment, and uncertain inference. Mathematicians, researchers, engineers, designers, and students in the field of mathematics, information science, operations research, system science, industrial engineering, computer science, artificial intelligence, finance, control, and management science will find this work a stimulating and useful reference.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen