Ulam’s Conjecture on Invariance of Measure in the Hilbert Cube
Produktnummer:
18a592ca8649a84641868c45a29bee4819
Autor: | Jung, Soon-Mo |
---|---|
Themengebiete: | Hausdorff measures Hilbert cube Hilbert space theory Isometries Lebesque measures Measure theory Ulam's conjecture first-order generalized spans invariance measure separable Hilbert space |
Veröffentlichungsdatum: | 29.06.2023 |
EAN: | 9783031308857 |
Sprache: | Englisch |
Seitenzahl: | 190 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Ulam’s Conjecture on Invariance of Measure in the Hilbert Cube"
This book discusses the process by which Ulam's conjecture is proved, aptly detailing how mathematical problems may be solved by systematically combining interdisciplinary theories. It presents the state-of-the-art of various research topics and methodologies in mathematics, and mathematical analysis by presenting the latest research in emerging research areas, providing motivation for further studies. The book also explores the theory of extending the domain of local isometries by introducing a generalized span.For the reader, working knowledge of topology, linear algebra, and Hilbert space theory, is essential. The basic theories of these fields are gently and logically introduced. The content of each chapter provides the necessary building blocks to understanding the proof of Ulam’s conjecture and are summarized as follows: Chapter 1 presents the basic concepts and theorems of general topology. In Chapter 2, essential concepts and theorems in vector space, normed space, Banach space, inner product space, and Hilbert space, are introduced. Chapter 3 gives a presentation on the basics of measure theory. In Chapter 4, the properties of first- and second-order generalized spans are defined, examined, and applied to the study of the extension of isometries. Chapter 5 includes a summary of published literature on Ulam’s conjecture; the conjecture is fully proved in Chapter 6.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen