Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning
Produktnummer:
18267996b8e2ea4f139f2c0ba79acc23e5
Autor: | Jain, Vikram Verhelst, Marian |
---|---|
Themengebiete: | Edge AI deep learning hardware accelerators homogeneous and heterogeneous systems machine learning |
Veröffentlichungsdatum: | 17.09.2023 |
EAN: | 9783031382291 |
Sprache: | Englisch |
Seitenzahl: | 186 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Untertitel: | Journey from Single-core Acceleration to Multi-core Heterogeneous Systems |
Produktinformationen "Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning"
This book explores and motivates the need for building homogeneous and heterogeneous multi-core systems for machine learning to enable flexibility and energy-efficiency. Coverage focuses on a key aspect of the challenges of (extreme-)edge-computing, i.e., design of energy-efficient and flexible hardware architectures, and hardware-software co-optimization strategies to enable early design space exploration of hardware architectures. The authors investigate possible design solutions for building single-core specialized hardware accelerators for machine learning and motivates the need for building homogeneous and heterogeneous multi-core systems to enable flexibility and energy-efficiency. The advantages of scaling to heterogeneous multi-core systems are shown through the implementation of multiple test chips and architectural optimizations.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen