Produktnummer:
18c1e3e412d10642a8881021ceb5499b89
Themengebiete: | Bildverarbeitung Control theory Optimierung Partielle Differentialgleichung Shape representations optimal transport relaxation theory shape optimization |
---|---|
Veröffentlichungsdatum: | 07.08.2017 |
EAN: | 9783110439267 |
Auflage: | 1 |
Sprache: | Englisch |
Seitenzahl: | 432 |
Produktart: | Gebunden |
Herausgeber: | Bergounioux, Maïtine Carlier, Guillaume Champion, Thierry Oudet, Édouard Rumpf, Martin Santambrogio, Filippo |
Verlag: | De Gruyter |
Untertitel: | In the Applied Sciences |
Produktinformationen "Topological Optimization and Optimal Transport"
By discussing topics such as shape representations, relaxation theory and optimal transport, trends and synergies of mathematical tools required for optimization of geometry and topology of shapes are explored. Furthermore, applications in science and engineering, including economics, social sciences, biology, physics and image processing are covered. ContentsPart I Geometric issues in PDE problems related to the infinity Laplace operator Solution of free boundary problems in the presence of geometric uncertainties Distributed and boundary control problems for the semidiscrete Cahn–Hilliard/Navier–Stokes system with nonsmooth Ginzburg–Landau energies High-order topological expansions for Helmholtz problems in 2D On a new phase field model for the approximation of interfacial energies of multiphase systems Optimization of eigenvalues and eigenmodes by using the adjoint method Discrete varifolds and surface approximation Part II Weak Monge–Ampere solutions of the semi-discrete optimal transportation problem Optimal transportation theory with repulsive costs Wardrop equilibria: long-term variant, degenerate anisotropic PDEs and numerical approximations On the Lagrangian branched transport model and the equivalence with its Eulerian formulation On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows Pressureless Euler equations with maximal density constraint: a time-splitting scheme Convergence of a fully discrete variational scheme for a thin-film equatio Interpretation of finite volume discretization schemes for the Fokker–Planck equation as gradient flows for the discrete Wasserstein distance

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen