Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

37,44 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 18d55a513a9f76404688bd15740f302524
Autor: Krishnan, V Adithya Kulkarni, Akshay R Kulkarni, Anoosh Shivananda, Adarsha
Themengebiete: Data Science Machine Learning Multivariate Python Time Series Univariate
Veröffentlichungsdatum: 24.12.2022
EAN: 9781484289778
Sprache: Englisch
Seitenzahl: 174
Produktart: Kartoniert / Broschiert
Verlag: APRESS
Untertitel: Implement Machine Learning and Deep Learning Techniques with Python
Produktinformationen "Time Series Algorithms Recipes"
This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen