Produktnummer:
187bd091f8ef17432b8025c56555bdf1e4
Themengebiete: | Euclidean geometry Hilbert problem Johannes Kepler Kepler conjecture condensed matter physics discrete geometry formal proof metric geometry sphere packing theorem proving |
---|---|
Veröffentlichungsdatum: | 08.11.2011 |
EAN: | 9781461411284 |
Sprache: | Englisch |
Seitenzahl: | 456 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Lagarias, Jeffrey C. |
Verlag: | Springer US |
Untertitel: | The Hales-Ferguson Proof |
Produktinformationen "The Kepler Conjecture"
The Kepler conjecture, one of geometry's oldest unsolved problems, was formulated in 1611 by Johannes Kepler and mentioned by Hilbert in his famous 1900 problem list. The Kepler conjecture states that the densest packing of three-dimensional Euclidean space by equal spheres is attained by the “cannonball" packing. In a landmark result, this was proved by Thomas C. Hales and Samuel P. Ferguson, using an analytic argument completed with extensive use of computers.This book centers around six papers, presenting the detailed proof of the Kepler conjecture given by Hales and Ferguson, published in 2006 in a special issue of Discrete & Computational Geometry. Further supporting material is also presented: a follow-up paper of Hales et al (2010) revising the proof, and describing progress towards a formal proof of the Kepler conjecture. For historical reasons, this book also includes two early papers of Hales that indicate his original approach to the conjecture.The editor's two introductory chapters situate the conjecture in a broader historical and mathematical context. These chapters provide a valuable perspective and are a key feature of this work.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen