Synthesis of Model-Based and Data-Driven Approaches for Optimal Traffic Control
Produktnummer:
185c010ce948c144ac911ad577af467350
Autor: | Baumgart, Urs |
---|---|
Themengebiete: | Angewandte Mathematiker Data Scientists Imitation Learning Model Predictive Control Optimal Control Reinforcement Learning Traffic Control Verkehrsingenieure |
Veröffentlichungsdatum: | 11.10.2023 |
EAN: | 9783839619520 |
Sprache: | Englisch |
Seitenzahl: | 129 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Fraunhofer Verlag |
Produktinformationen "Synthesis of Model-Based and Data-Driven Approaches for Optimal Traffic Control"
In view of steadily growing traffic flow and demand for mobility services, intelligent vehicles and traffic systems are becoming increasingly important. At the same time, today's vehicle technology and mobility infrastructure allow to collect and to transmit large and comprehensive data that may be used by complex driver assistance systems or (semi-) autonomous vehicles, as well as traffic light control systems. This thesis therefore presents different model-based and data-driven approaches to optimally control traffic flow with the ultimate goal to combine them. Besides traffic light control, the main application scenario of this work is the design of intelligent (possibly autonomous) vehicle controllers to dissipate stop-and-go waves on highways or in city traffic. In this context, a controller is proposed that stabilizes traffic flow by combining theoretical guarantees of model-based control with real-time and generalization capability of data-driven control. The approach is validated and tested in different scenarios including experiments at a driving simulator.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen