Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Supporting Communication in Spatially Distributed Groups

50,00 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 188991f29d408f40da9d2426711e9c57c4
Autor: van de Ven, Jasper
Themengebiete: Ambient Intelligence Angewandte Informatik Artificial Intelligence Communication Computing & IT: Benutzerhandbücher Privacy QSTR
Veröffentlichungsdatum: 20.10.2016
EAN: 9783898383417
Auflage: 1
Sprache: Englisch
Seitenzahl: 202
Produktart: Kartoniert / Broschiert
Verlag: Akademische Verlagsgesellschaft AKA
Untertitel: Privacy as a Service for Ambient Intelligence
Produktinformationen "Supporting Communication in Spatially Distributed Groups"
Natural Language Generation (NLG) systems in interactive settings often face a multitude of choices, given that the communicative effect of each utterance they generate depends crucially on the interplay between its situational circumstances, addressee and interaction history. This is particularly true in interactive and situated settings. Traditionally, the generation process has been divided into distinct stages of decision making, e.g. content selection, utterance planning and surface realisation. However, this sequential model does not account for the interdependencies that exist among these stages, which in practice can become manifest in inefficient, ineffective communication and an increased cognitive load for the user.This book presents a joint optimisation framework for NLG in dialogue that is based on Hierarchical Reinforcement Learning and learns the best utterance for a context by optimisation through trial and error. The joint model considers decisions at different NLG stages interdependently and produces more context-sensitive utterances than a model that considers decisions in isolation. To enhance the human-likeness of the presented framework, we integrate graphical models, trained from human data, as generation space models for natural surface realisation. The proposed technique is evaluated in a study with human participants and confirms that the hierarchical learner is able to learn an adaptive policy that leads to smooth and successful interactions. Results also suggest that a joint optimisation leads to substantially higher user satisfaction and task success and is better perceived by human users than its isolated counterpart.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen