Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Supervised and Semi-supervised Multi-structure Segmentation and Landmark Detection in Dental Data

139,09 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 186aea44fc790049139ad77b9ec8b1bf06
Themengebiete: Artificial intelligence Computer vision Computing methodologies Design and analysis of algorithms Health informatics Learning settings Life and medical sciences Semi-supervised learning settings
Veröffentlichungsdatum: 17.05.2025
EAN: 9783031889769
Sprache: Englisch
Seitenzahl: 242
Produktart: Kartoniert / Broschiert
Herausgeber: Ben-Hamadou, Achraf Bolelli, Federico Grana, Costantino Lumetti, Luca Pujades, Sergi Qian, Dahong Wang, Shuai Wang, Yaqi
Verlag: Springer International Publishing
Untertitel: MICCAI 2024 Challenges: ToothFairy 2024, 3DTeethLand 2024, and STS 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings
Produktinformationen "Supervised and Semi-supervised Multi-structure Segmentation and Landmark Detection in Dental Data"
This book constitutes three challenges that were held in conjunction with the 27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024, in Marrakesh, Morocco, on October 6, 2024:  ToothFairy challenge(ToothFairy2: Multi-Structure Segmentation in CBCT Volumes), Semi-supervised Teeth Segmentation (STS 2024), and the 3DTeethLand (3D Teeth Landmarks Detection Challenge).The 21 papers presented in this volume were carefully reviewed and selected from 28 submissions. ToothFairy challenges focused on the development of deep learning frameworks to segment anatomical structures in CBCTs by incrementally extending the amount of publicly available 3D-annotated CBCT scans and providing the first publicly available fully annotated datasets. The STS Challenge promoted the development of teeth segmentation in panoramic X-ray images and CBCT scans. It also provided instance annotations for different teeth, including pertinent category information. The 3DTeethLand24 Challenge played a key role in advancing automation and leveraging AI to optimize orthodontic treatments. It also aims to tackle the challenge of limited access to data, providing a valuable resource that encourages community engagement in this vital area with potential clinical implications.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen