Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Simulation-Based Optimization

128,39 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 18e418d746f7f642dda1807475594458c8
Autor: Gosavi, Abhijit
Themengebiete: Computational Operations Research Operations Research Optimization Reinforcement Learning Simulation
Veröffentlichungsdatum: 10.09.2016
EAN: 9781489977311
Auflage: 2
Sprache: Englisch
Seitenzahl: 508
Produktart: Kartoniert / Broschiert
Verlag: Springer US
Untertitel: Parametric Optimization Techniques and Reinforcement Learning
Produktinformationen "Simulation-Based Optimization"
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms.Key features of this revised and improved Second Edition include:· Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms)· Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming(value and policy iteration) for discounted, average, and total reward performance metrics· An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata· A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential EquationsThemed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis– this book is written for researchers and students in the fields of engineering (industrial, systems,electrical and computer), operations research, computer science and applied mathematics.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen