Self-Adaptive Heuristics for Evolutionary Computation
Produktnummer:
18553024692c7c434c9bb4cc4719a1086d
Autor: | Kramer, Oliver |
---|---|
Themengebiete: | Computational Intelligence Computer-Aided Design (CAD) Evolution Evolutionary Intelligence Mutation Operator Self-Adaptive Heuristics algorithm algorithms biologically inspired |
Veröffentlichungsdatum: | 19.08.2008 |
EAN: | 9783540692805 |
Sprache: | Englisch |
Seitenzahl: | 182 |
Produktart: | Gebunden |
Verlag: | Springer Berlin |
Produktinformationen "Self-Adaptive Heuristics for Evolutionary Computation"
Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves.This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen