Rough Set–Based Classification Systems
Produktnummer:
183707879013b6445b9723a96aa8eab41e
Autor: | Nowicki, Robert K. |
---|---|
Themengebiete: | Classifiiers Computational Intelligence Decision Making Fuzzy Rough Classifiers Rough Neural Networks Rough Sets Theory |
Veröffentlichungsdatum: | 05.02.2019 |
EAN: | 9783030038946 |
Sprache: | Englisch |
Seitenzahl: | 188 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "Rough Set–Based Classification Systems"
This book demonstrates an original concept for implementing the rough set theory in the construction of decision-making systems. It addresses three types of decisions, including those in which the information or input data is insufficient. Though decision-making and classification in cases with missing or inaccurate data is a common task, classical decision-making systems are not naturally adapted to it. One solution is to apply the rough set theory proposed by Prof. Pawlak.The proposed classifiers are applied and tested in two configurations: The first is an iterative mode in which a single classification system requests completion of the input data until an unequivocal decision (classification) is obtained. It allows us to start classification processes using very limited input data and supplementing it only as needed, which limits the cost of obtaining data. The second configuration is an ensemble mode in which several rough set-based classification systems achieve the unequivocal decision collectively, even though the systems cannot separately deliver such results.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen