Produktnummer:
18d840377d869340129285cb285176d48a
Themengebiete: | Analysis Clustering algorithm algorithms computer computer science data analysis linear optimization multidimensional scaling nonlinear optimization |
---|---|
Veröffentlichungsdatum: | 01.10.2007 |
EAN: | 9783540737490 |
Sprache: | Englisch |
Seitenzahl: | 340 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Gorban, Alexander N. Kégl, Balázs Wunsch, Donald C. Zinovyev, Andrei |
Verlag: | Springer Berlin |
Produktinformationen "Principal Manifolds for Data Visualization and Dimension Reduction"
In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SOM), etc. The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving mappings are described as well. Presentation of algorithms is supplemented by case studies, from engineering to astronomy, but mostly of biological data: analysis of microarray and metabolite data. The volume ends with a tutorial "PCA and K-means decipher genome". The book is meant to be useful for practitioners in applied data analysis in life sciences, engineering, physics and chemistry; it will also be valuable to PhD students and researchers in computer sciences, applied mathematics and statistics.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen