Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Practical Machine Learning for Streaming Data with Python

64,19 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 183424783e7ccf4695bca658a3c965ea78
Autor: Putatunda, Sayan
Themengebiete: Apache Kafka Artificial Intelligence Concept Drift Machine Learning Online Learning Python Real Time Analytics Scikit-Multiflow Streaming data
Veröffentlichungsdatum: 09.04.2021
EAN: 9781484268667
Sprache: Englisch
Seitenzahl: 118
Produktart: Kartoniert / Broschiert
Verlag: APRESS
Untertitel: Design, Develop, and Validate Online Learning Models
Produktinformationen "Practical Machine Learning for Streaming Data with Python"
Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights. You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow.Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more.What You'll LearnUnderstand machine learning with streaming data conceptsReview incremental and online learningDevelop models for detecting concept driftExplore techniques for classification, regression, and ensemble learning in streaming data contextsApply best practices for debugging and validating machine learning models in streaming data contextGet introduced to other open-source frameworks for handling streaming data.Who This Book Is ForMachine learning engineers and data science professionals

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen