Produktnummer:
186c35400eed1144ef82ef16616e047568
Themengebiete: | Algorithms Applications Big Data Analytics Data Mining Frequent Patterns Pattern Mining Periodic Patterns Time series Transactional databases |
---|---|
Veröffentlichungsdatum: | 30.10.2021 |
EAN: | 9789811639630 |
Sprache: | Englisch |
Seitenzahl: | 263 |
Produktart: | Gebunden |
Herausgeber: | Fournier-Viger, Philippe Kiran, R. Uday Lin, Jerry Chun-Wei Luna, Jose M. Mondal, Anirban |
Verlag: | Springer Singapore |
Untertitel: | Theory, Algorithms, and Applications |
Produktinformationen "Periodic Pattern Mining"
This book provides an introduction to the field of periodic pattern mining, reviews state-of-the-art techniques, discusses recent advances, and reviews open-source software. Periodic pattern mining is a popular and emerging research area in the field of data mining. It involves discovering all regularly occurring patterns in temporal databases. One of the major applications of periodic pattern mining is the analysis of customer transaction databases to discover sets of items that have been regularly purchased by customers. Discovering such patterns has several implications for understanding the behavior of customers. Since the first work on periodic pattern mining, numerous studies have been published and great advances have been made in this field. The book consists of three main parts: introduction, algorithms, and applications. The first chapter is an introduction to pattern mining and periodic pattern mining. The concepts of periodicity, periodic support, search space exploration techniques, and pruning strategies are discussed. The main types of algorithms are also presented such as periodic-frequent pattern growth, partial periodic pattern-growth, and periodic high-utility itemset mining algorithm. Challenges and research opportunities are reviewed.The chapters that follow present state-of-the-art techniques for discovering periodic patterns in (1) transactional databases, (2) temporal databases, (3) quantitative temporal databases, and (4) big data. Then, the theory on concise representations of periodic patterns is presented, as well as hiding sensitive information using privacy-preserving data mining techniques.The book concludes with several applications of periodic pattern mining, including applications in air pollution data analytics, accident data analytics, and traffic congestion analytics.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen