Non-commuting Variations in Mathematics and Physics
Produktnummer:
184dc52d96c1d0416884c6c7cc4f17e8d6
Autor: | Preston, Serge |
---|---|
Themengebiete: | Differential Equations Dissipation Energy-momentum Balance Law Entropy Hamiltonian Systems Mechanics Noether Theorem Non-holonomic Symmetries Variational Calculus |
Veröffentlichungsdatum: | 11.03.2016 |
EAN: | 9783319283210 |
Sprache: | Englisch |
Seitenzahl: | 235 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | A Survey |
Produktinformationen "Non-commuting Variations in Mathematics and Physics"
This text presents and studies the method of so –called noncommuting variations in Variational Calculus. This method was pioneered by Vito Volterra who noticed that the conventional Euler-Lagrange (EL-) equations are not applicable in Non-Holonomic Mechanics and suggested to modify the basic rule used in Variational Calculus. This book presents a survey of Variational Calculus with non-commutative variations and shows that most basic properties of conventional Euler-Lagrange Equations are, with some modifications, preserved for EL-equations with K-twisted (defined by K)-variations. Most of the book can be understood by readers without strong mathematical preparation (some knowledge of Differential Geometry is necessary). In order to make the text more accessible the definitions and several necessary results in Geometry are presented separately in Appendices I and II Furthermore in Appendix III a short presentation of the Noether Theorem describing the relation between the symmetries of the differential equations with dissipation and corresponding s balance laws is presented.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen