Neural Networks with Model Compression
Zhang, Baochang, Wang, Tiancheng, Xu, Sheng, Doermann, David
Produktnummer:
18041025bb62f34c5882e5ec88f3e8df58
Autor: | Doermann, David Wang, Tiancheng Xu, Sheng Zhang, Baochang |
---|---|
Themengebiete: | Artificial Intelligence Binary Neural Network Computer Vision Machine Learning Model Compression |
Veröffentlichungsdatum: | 05.02.2025 |
EAN: | 9789819950706 |
Sprache: | Englisch |
Seitenzahl: | 260 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Singapore |
Produktinformationen "Neural Networks with Model Compression"
Deep learning has achieved impressive results in image classification, computer vision and natural language processing. To achieve better performance, deeper and wider networks have been designed, which increase the demand for computational resources. The number of floating-point operations (FLOPs) has increased dramatically with larger networks, and this has become an obstacle for convolutional neural networks (CNNs) being developed for mobile and embedded devices. In this context, our book will focus on CNN compression and acceleration, which are important for the research community. We will describe numerous methods, including parameter quantization, network pruning, low-rank decomposition and knowledge distillation. More recently, to reduce the burden of handcrafted architecture design, neural architecture search (NAS) has been used to automatically build neural networks by searching over a vast architecture space. Our book will also introduce NAS due to its superiority and state-of-the-art performance in various applications, such as image classification and object detection. We also describe extensive applications of compressed deep models on image classification, speech recognition, object detection and tracking. These topics can help researchers better understand the usefulness and the potential of network compression on practical applications. Moreover, interested readers should have basic knowledge about machine learning and deep learning to better understand the methods described in this book.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen