Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Navier–Stokes Equations on R3 × [0, T]

106,99 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 18d24c39c5a5864e6b9e2466cb778d411c
Produktinformationen "Navier–Stokes Equations on R3 × [0, T]"
In this monograph, leading researchers in the world of numerical analysis, partial differential equations, and hard computational problems study the properties of solutions of the Navier–Stokespartial differential equations on (x, y, z, t) ? R3 × [0, T]. Initially converting the PDE to a system of integral equations, the authors then describe spaces A of analytic functions that house solutions of this equation, and show that these spaces of analytic functions are dense in the spaces S of rapidly decreasing and infinitely differentiable functions. This method benefits from the following advantages:The functions of S are nearly always conceptual rather than explicitInitial and boundary conditions of solutions of PDE are usually drawn from the applied sciences, and as such, they are nearly always piece-wise analytic, and in this case, the solutions have the same propertiesWhen methods of approximation are applied to functions of A they converge at an exponential rate, whereas methods of approximation applied to the functions of S converge only at a polynomial rateEnables sharper bounds on the solution enabling easier existence proofs, and a more accurate and more efficient method of solution, including accurate error boundsFollowing the proofs of denseness, the authors prove the existence of a solution of the integral equations in the space of functions A n R3 × [0, T], and provide an explicit novel algorithm based on Sinc approximation and Picard–like iteration for computing the solution. Additionally, the authors include appendices that provide a custom Mathematica program for computing solutions based on the explicit algorithmic approximation procedure, and which supply explicit illustrations of these computed solutions.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen