Multiple Information Source Bayesian Optimization
Produktnummer:
18feecdc7d1e1a472f8269b7fdcfdf51b4
Autor: | Archetti, Francesco Candelieri, Antonio Ponti, Andrea |
---|---|
Themengebiete: | Bayesian Optimization Exploration-Exploitation Fairness in Machine Learning Gaussian Process regression Large Language Models Multi-fidelity optimization Multi-objective optimization Multiple Information Source Optimization Red and Green Artificial Intelligence Simulation-optimization |
Veröffentlichungsdatum: | 07.09.2025 |
EAN: | 9783031979644 |
Sprache: | Englisch |
Seitenzahl: | 100 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Multiple Information Source Bayesian Optimization"
The book provides a comprehensive review of multiple information sources and multi-fidelity Bayesian optimization, specifically focusing on the novel "Augmented Gaussian Process” methodology. The book is important to clarify the relations and the important differences in using multi-fidelity or multiple information source approaches for solving real-world problems. Choosing the most appropriate strategy, depending on the specific problem features, ensures the success of the final solution. The book also offers an overview of available software tools: in particular it presents two implementations of the Augmented Gaussian Process-based Multiple Information Source Bayesian Optimization, one in Python -- and available as a development branch in BoTorch -- and finally, a comparative analysis against other available multi-fidelity and multiple information sources optimization tools is presented, considering both test problems and real-world applications. The book will be useful to two main audiences:1. PhD candidates in Computer Science, Artificial Intelligence, Machine Learning, and Optimization2. Researchers from academia and industry who want to implement effective and efficient procedures for designing experiments and optimizing computationally expensive experiments in domains like engineering design, material science, and biotechnology.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen