Multimodal Learning toward Recommendation
Produktnummer:
184ad7b581705d42358cedac92e48d6c23
Autor: | Li, Zhenyang Liu, Fan Nie, Liqiang |
---|---|
Themengebiete: | Feature Extraction Machine Learning Neural Networks Preference Modeling Recommendation Systems |
Veröffentlichungsdatum: | 18.01.2025 |
EAN: | 9783031831874 |
Sprache: | Englisch |
Seitenzahl: | 152 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Multimodal Learning toward Recommendation"
This book presents an in-depth exploration of multimodal learning toward recommendation, along with a comprehensive survey of the most important research topics and state-of-the-art methods in this area.First, it presents a semantic-guided feature distillation method which employs a teacher-student framework to robustly extract effective recommendation-oriented features from generic multimodal features. Next, it introduces a novel multimodal attentive metric learning method to model user diverse preferences for various items. Then it proposes a disentangled multimodal representation learning recommendation model, which can capture users’ fine-grained attention to different modalities on each factor in user preference modeling. Furthermore, a meta-learning-based multimodal fusion framework is developed to model the various relationships among multimodal information. Building on the success of disentangled representation learning, it further proposes an attribute-driven disentangled representation learning method, which uses attributes to guide the disentanglement process in order to improve the interpretability and controllability of conventional recommendation methods. Finally, the book concludes with future research directions in multimodal learning toward recommendation.The book is suitable for graduate students and researchers who are interested in multimodal learning and recommender systems. The multimodal learning methods presented are also applicable to other retrieval or sorting related research areas, like image retrieval, moment localization, and visual question answering.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen