Produktnummer:
18565d56e2858a42b1abd337d063ffafb5
Themengebiete: | Support Vector Machine decision tree evolution fuzzy fuzzy system fuzzy systems genetic algorithms intelligent systems learning machine learning |
---|---|
Veröffentlichungsdatum: | 10.02.2006 |
EAN: | 9783540306764 |
Sprache: | Englisch |
Seitenzahl: | 660 |
Produktart: | Gebunden |
Herausgeber: | Jin, Yaochu |
Verlag: | Springer Berlin |
Produktinformationen "Multi-Objective Machine Learning"
Recently, increasing interest has been shown in applying the concept of Pareto-optimality to machine learning, particularly inspired by the successful developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal models for constructing ensembles models and, and to achieve a desired trade-off between accuracy and interpretability of neural networks or fuzzy systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen