Mathematical Theories of Machine Learning - Theory and Applications
Produktnummer:
18d2e33c4345ec46ebad4f4bfe439a7f87
Autor: | Iyengar, S. S. Shi, Bin |
---|---|
Themengebiete: | deep learning gradient decent machine learning minimizers multi-variate time-series non-convex optimization subspace clustering |
Veröffentlichungsdatum: | 26.06.2019 |
EAN: | 9783030170752 |
Sprache: | Englisch |
Seitenzahl: | 133 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "Mathematical Theories of Machine Learning - Theory and Applications"
This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen