Math for Data Science
Produktnummer:
18a028dcbd2f934b8f8f9bb57d03f60bda
Autor: | Hijab, Omar |
---|---|
Themengebiete: | Python book math data analytics book math data science entropy convexity gradient descent linear geometry machine learning math data science book network training neural networks |
Veröffentlichungsdatum: | 27.05.2025 |
EAN: | 9783031897061 |
Sprache: | Englisch |
Seitenzahl: | 575 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "Math for Data Science"
Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science. The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability.Clear examples are supported with detailed figures and Python code; Jupyter notebooks and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen