Machine Learning under Malware Attack
Produktnummer:
18da01a9e477034c2c97a7683718d3b6f7
Autor: | Labaca-Castro, Raphael |
---|---|
Themengebiete: | Adversarial ML Computer Security FAME Machine Learning Malware Trustworthy AI |
Veröffentlichungsdatum: | 01.02.2023 |
EAN: | 9783658404413 |
Sprache: | Englisch |
Seitenzahl: | 116 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Fachmedien Wiesbaden GmbH |
Produktinformationen "Machine Learning under Malware Attack"
Machine learning has become key in supporting decision-making processes across a wide array of applications, ranging from autonomous vehicles to malware detection. However, while highly accurate, these algorithms have been shown to exhibit vulnerabilities, in which they could be deceived to return preferred predictions. Therefore, carefully crafted adversarial objects may impact the trust of machine learning systems compromising the reliability of their predictions, irrespective of the field in which they are deployed. The goal of this book is to improve the understanding of adversarial attacks, particularly in the malware context, and leverage the knowledge to explore defenses against adaptive adversaries. Furthermore, to study systemic weaknesses that can improve the resilience of machine learning models.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen