Lobachevsky Geometry and Modern Nonlinear Problems
Produktnummer:
189b6b6fbd06e542c1a325cbe57129eb47
Autor: | Popov, Andrey |
---|---|
Themengebiete: | Tchebychev nets hyperbolic geometry nonlinear equations of mathematical physics partial differential equations pseudospherical surfaces sine-Gordon equation |
Veröffentlichungsdatum: | 20.08.2014 |
EAN: | 9783319056685 |
Sprache: | Englisch |
Seitenzahl: | 310 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "Lobachevsky Geometry and Modern Nonlinear Problems"
This monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyperbolic Lobachevsky geometry, pseudo spherical surfaces theory, net geometrical investigative techniques of nonlinear differential equations in partial derivatives, and their applications to the analysis of the physical models. As the sine-Gordon equation appears to have profound “geometrical roots” and numerous applications to modern nonlinear problems, it is treated as a universal “object” of investigation, connecting many of the problems discussed. The aim of this book is to form a general geometrical view on the different problems of modern mathematics, physics and natural science in general in the context of non-Euclidean hyperbolic geometry.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen