Lectures on Morse Homology
Produktnummer:
18879004bbf8f24857a9433ac89a184c7f
Autor: | Banyaga, Augustin Hurtubise, David |
---|---|
Themengebiete: | Algebraic topology Floer homology Homotopy brandonwiskunde homology homotopy theory manifold ordinary differential equations |
Veröffentlichungsdatum: | 29.10.2004 |
EAN: | 9781402026959 |
Sprache: | Englisch |
Seitenzahl: | 326 |
Produktart: | Gebunden |
Verlag: | Springer Netherland |
Produktinformationen "Lectures on Morse Homology"
This book is based on the lecture notes from a course we taught at Penn State University during the fall of 2002. The main goal of the course was to give a complete and detailed proof of the Morse Homology Theorem (Theo rem 7.4) at a level appropriate for second year graduate students. The course was designed for students who had a basic understanding of singular homol ogy, CW-complexes, applications of the existence and uniqueness theorem for O.D.E.s to vector fields on smooth Riemannian manifolds, and Sard's Theo rem. We would like to thank the following students for their participation in the course and their help proofreading early versions of this manuscript: James Barton, Shantanu Dave, Svetlana Krat, Viet-Trung Luu, and Chris Saunders. We would especially like to thank Chris Saunders for his dedication and en thusiasm concerning this project and the many helpful suggestions he made throughout the development of this text. We would also like to thank Bob Wells for sharing with us his extensive knowledge of CW-complexes, Morse theory, and singular homology. Chapters 3 and 6, in particular, benefited significantly from the many insightful conver sations we had with Bob Wells concerning a Morse function and its associated CW-complex.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen