KdV & KAM
Produktnummer:
18c4ed78db808f4004966cda61bfb13cf5
Autor: | Kappeler, Thomas Pöschel, Jürgen |
---|---|
Themengebiete: | Calculation Finite Integrable Systems KAM Theory KdV Equation Perturbation Theory equation function proof theorem |
Veröffentlichungsdatum: | 19.05.2003 |
EAN: | 9783540022343 |
Sprache: | Englisch |
Seitenzahl: | 279 |
Produktart: | Gebunden |
Verlag: | Springer Berlin |
Produktinformationen "KdV & KAM"
In this text the authors consider the Korteweg-de Vries (KdV) equation (ut = - uxxx + 6uux) with periodic boundary conditions. Derived to describe long surface waves in a narrow and shallow channel, this equation in fact models waves in homogeneous, weakly nonlinear and weakly dispersive media in general.Viewing the KdV equation as an infinite dimensional, and in fact integrable Hamiltonian system, we first construct action-angle coordinates which turn out to be globally defined. They make evident that all solutions of the periodic KdV equation are periodic, quasi-periodic or almost-periodic in time. Also, their construction leads to some new results along the way. Subsequently, these coordinates allow us to apply a general KAM theorem for a class of integrable Hamiltonian pde's, proving that large families of periodic and quasi-periodic solutions persist under sufficiently small Hamiltonian perturbations. The pertinent nondegeneracy conditions are verified by calculating the first few Birkhoff normal form terms -- an essentially elementary calculation.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen