Introduction to Arakelov Theory
Produktnummer:
185e14d93fdd9c4c6890af40d3c20ee073
Autor: | Lang, Serge |
---|---|
Themengebiete: | Divisor Grad Riemann-Roch theorem cohomology field |
Veröffentlichungsdatum: | 30.09.2012 |
EAN: | 9781461269915 |
Sprache: | Englisch |
Seitenzahl: | 187 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer US |
Produktinformationen "Introduction to Arakelov Theory"
Arakelov introduced a component at infinity in arithmetic considerations, thus giving rise to global theorems similar to those of the theory of surfaces, but in an arithmetic context over the ring of integers of a number field. The book gives an introduction to this theory, including the analogues of the Hodge Index Theorem, the Arakelov adjunction formula, and the Faltings Riemann-Roch theorem. The book is intended for second year graduate students and researchers in the field who want a systematic introduction to the subject. The residue theorem, which forms the basis for the adjunction formula, is proved by a direct method due to Kunz and Waldi. The Faltings Riemann-Roch theorem is proved without assumptions of semistability. An effort has been made to include all necessary details, and as complete references as possible, especially to needed facts of analysis for Green's functions and the Faltings metrics.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen