Produktnummer:
1817f8d01118374f379e56b776ab17e134
Themengebiete: | Control theory Free boundary problems Navier-Stokes equations Navier–Stokes equation Optimal control Partial differential equations Stability fluid mechanics numerical analysis partial differential equation |
---|---|
Veröffentlichungsdatum: | 29.11.2010 |
EAN: | 9781441925879 |
Sprache: | Englisch |
Seitenzahl: | 378 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Bardos, Claude Fursikov, Andrei V. |
Verlag: | Springer US |
Produktinformationen "Instability in Models Connected with Fluid Flows II"
Stability is a very important property of mathematical models simulating physical processes which provides an adequate description of the process. Starting from the classical notion of the well-posedness in the Hadamard sense, this notion was adapted to different areas of research and at present is understood, depending on the physical problem under consideration, as the Lyapunov stability of stationary solutions, stability of specified initial data, stability of averaged models, etc.The stability property is of great interest for researchers in many fields such as mathematical analysis, theory of partial differential equations, optimal control, numerical analysis, fluid mechanics, etc. etc. The variety of recent results, surveys, methods and approaches to different models presented by leading world-known mathematicians, makes both volumes devoted to the stability and instability of mathematical models in fluid mechanics very attractive for provisional buyers/readers working in the above mentioned and related areas.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen