Implicit Partial Differential Equations
Produktnummer:
181ebcc9714b184599a4cd3e10edb6d584
Autor: | Dacorogna, Bernard Marcellini, Paolo |
---|---|
Themengebiete: | Boundary value problem Lipschitz domain approximation property calculus calculus of variations nonlinear analysis odes/pdes partial differential equation partial differential equations |
Veröffentlichungsdatum: | 01.08.1999 |
EAN: | 9780817641214 |
Sprache: | Englisch |
Seitenzahl: | 273 |
Produktart: | Gebunden |
Verlag: | Birkhäuser Boston |
Produktinformationen "Implicit Partial Differential Equations"
Nonlinear partial differential equations has become one of the main tools of mod ern mathematical analysis; in spite of seemingly contradictory terminology, the subject of nonlinear differential equations finds its origins in the theory of linear differential equations, and a large part of functional analysis derived its inspiration from the study of linear pdes. In recent years, several mathematicians have investigated nonlinear equations, particularly those of the second order, both linear and nonlinear and either in divergence or nondivergence form. Quasilinear and fully nonlinear differential equations are relevant classes of such equations and have been widely examined in the mathematical literature. In this work we present a new family of differential equations called "implicit partial differential equations", described in detail in the introduction (c.f. Chapter 1). It is a class of nonlinear equations that does not include the family of fully nonlinear elliptic pdes. We present a new functional analytic method based on the Baire category theorem for handling the existence of almost everywhere solutions of these implicit equations. The results have been obtained for the most part in recent years and have important applications to the calculus of variations, nonlin ear elasticity, problems of phase transitions and optimal design; some results have not been published elsewhere.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen