Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Harmonic Analysis on Semi-Simple Lie Groups II

139,09 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 16A22557395
Autor: Warner, Garth
Themengebiete: Analysis Calculus
Veröffentlichungsdatum: 15.04.2014
EAN: 9783642516429
Auflage: 1972
Sprache: Englisch
Seitenzahl: 504
Produktart: Kartoniert / Broschiert
Verlag: Springer Berlin Springer Berlin Heidelberg
Produktinformationen "Harmonic Analysis on Semi-Simple Lie Groups II"
6 Spherical Functions ¿ The General Theory.- 6.1 Fundamentals.- 6.1.1 Spherical Functions ¿ Functional Properties.- 6.1.2 Spherical Functions ¿ Differential Properties.- 6.2 Examples.- 6.2.1 Spherical Functions on Motion Groups.- 6.2.2 Spherical Functions on Semi-Simple Lie Groups.- 7 Topology on the Dual Plancherel Measure Introduction.- 7.1 Topology on the Dual.- 7.1.1 Generalities.- 7.1.2 Applications to Semi-Simple Lie Groups.- 7.2 Plancherel Measure.- 7.2.1 Generalities.- 7.2.2 The Plancherel Theorem for Complex Connected Semi-Simple Lie Groups.- 8 Analysis on a Semi-Simple Lie Group.- 8.1 Preliminaries.- 8.1.1 Acceptable Groups.- 8.1.2 Normalization of Invariant Measures.- 8.1.3 Integration Formulas.- 8.1.4 A Theorem of Compacity.- 8.1.5 The Standard Semi-Norm on a Semi-Simple Lie Group.- 8.1.6 Completely Invariant Sets.- 8.2 Differential Operators on Reductive Lie Groups and Algebras.- 8.2.1 Radial Components of Differential Operators on a Manifold.- 8.2.2 Radial Components of Polynomial Differential Operators on a Reductive Lie Algebra.- 8.2.3 Radial Components of Left Invariant Differential Operators on a Reductive Lie Group.- 8.2.4 The Connection between Differential Operators in the Algebra and on the Group.- 8.3 Central Eigendistributions on Reductive Lie Algebras and Groups.- 8.3.1 The Main Theorem in the Algebra.- 8.3.2 Properties of FT-I.- 8.3.3 The Main Theorem on the Group.- 8.3.4 Properties of FT- II.- 8.3.5 Rapidly Decreasing Functions on a Euclidean Space.- 8.3.6 Tempered Distributions on a Reductive Lie Algebra.- 8.3.7 Rapidly Decreasing Functions on a Reductive Lie Group.- 8.3.8 Tempered Distributions on a Reductive Lie Group.- 8.3.9 Tools for Harmonic Analysis on G.- 8.4 The Invariant Integral on a Reductive Lie Algebra.- 8.4.1 The Invariant Integral ¿ Definition and Properties.- 8.4.2 Computations in sl(2, R).- 8.4.3 Continuity of the Map f ? ?f.- 8.4.4 Extension Problems.- 8.4.5 The Main Theorem.- 8.5 The Invariant Integral on a Reductive Lie Group.- 8.5.1 The Invariant Integral ¿ Definition and Properties.- 8.5.2 The Inequalities of Descent.- 8.5.3 The Transformations of Descent.- 8.5.4 The Invariant Integral and the Transformations of Descent.- 8.5.5 Estimation of ?f and its Derivatives.- 8.5.6 An Important Inequality.- 8.5.7 Convergence of Certain Integrals.- 8.5.8 Continuity of the Map f? ?f.- 9 Spherical Functions on a Semi-Simple Lie Group.- 9.1 Asymptotic Behavior of ?-Spherical Functions on a Semi-Simple Lie Group.- 9.1.1 The Main Results.- 9.1.2 Analysis in the Universal Enveloping Algebra.- 9.1.3 The Space S(?,?).- 9.1.4 The Rational Functions ??.- 9.1.5 The Expansion of ?-Spherical Functions.- 9.1.6 Investigation of the c-Function.- 9.1.7 Applications to Zonal Spherical Functions.- 9.2 Zonal Spherical Functions on a Semi-Simple Lie Group.- 9.2.1 Statement of Results ¿ Immediate Applications.- 9.2.2 The Plancherel Theorem for I2(G).- 9.2.3 The Paley-Wiener Theorem for I2(G).- 9.2.4 Harmonic Analysis in I1(G).- 9.3 Spherical Functions and Differential Equations.- 9.3.1 The Weak Inequality and Some of its Implications.- 9.3.2 Existence and Uniqueness of the Indices I.- 9.3.3 Existence and Uniqueness of the Indices II.- 10 The Discrete Series for a Semi-Simple Lie Group ¿ Existence and Exhaustion.- 10.1 The Role of the Distributions ?? in the Harmonic Analysis on G.- 10.1.1 Existence and Uniqueness of the ??.- 10.1.2 Expansion of Z-Finite Functions in C-(G).- 10.2 Theory of the Discrete Series.- 10.2.1 Existence of the Discrete Series.- 10.2.2 The Characters of the Discrete Series I ¿ Implication of the Orthogonality Relations.- 10.2.3 The Characters of the Discrete Series II ¿ Application of the Differential Equations.- 10.2.4 The Theorem of Harish-Chandra.- Epilogue.- Append.- 3 Some Results on Differential Equations.- 3.1 The Main Theorems.- 3.2 Lemmas from Analysis.- 3.3 Analytic Continuation of Solutions.- 3.4 Decent Convergence.- 3.5 Normal Sequences of is-Polynomials.- General Notational Conventions.- List of Notations.- Guide to the Literature.- Subject Index to Volumes I and II.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen