Geometric Methods in the Algebraic Theory of Quadratic Forms
Produktnummer:
187eba4c90db944be898ef1cf8d34be158
Autor: | Izhboldin, Oleg T. Kahn, Bruno Karpenko, Nikita A. Vishik, Alexander |
---|---|
Themengebiete: | Chow groups Cohomology Dimension Quadratic forms algebra motives unramified cohomology |
Veröffentlichungsdatum: | 19.02.2004 |
EAN: | 9783540207283 |
Sprache: | Englisch |
Seitenzahl: | 198 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Tignol, Jean-Pierre |
Verlag: | Springer Berlin |
Untertitel: | Summer School, Lens, 2000 |
Produktinformationen "Geometric Methods in the Algebraic Theory of Quadratic Forms"
The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes an introduction to motives of quadrics by A. Vishik, with various applications, notably to the splitting patterns of quadratic forms, papers by O. Izhboldin and N. Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields with u-invariant 9, and a contribution in French by B. Kahn which lays out a general framework for the computation of the unramified cohomology groups of quadrics and other cellular varieties.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen