Geometric Methods and Optimization Problems
Produktnummer:
18db3e942e919c44f1a4a55c0c9e416f8d
Autor: | Boltyanski, Vladimir Martini, Horst Soltan, V. |
---|---|
Themengebiete: | Median Partition calculus combinatorics computational geometry geometry linear optimization optimization |
Veröffentlichungsdatum: | 09.01.2014 |
EAN: | 9781461374275 |
Sprache: | Englisch |
Seitenzahl: | 432 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer US |
Produktinformationen "Geometric Methods and Optimization Problems"
VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob vious and well-known (examples are the much discussed interplay between lin ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b~ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen