Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Gauss Diagram Invariants for Knots and Links

106,99 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 181422eeddbce844f48089f1cdf6c5ffe3
Autor: Fiedler, T.
Themengebiete: DEX Finite Invariant Knot theory Natural design diagrams integral modular curve quantum invariant
Veröffentlichungsdatum: 15.12.2010
EAN: 9789048157488
Sprache: Englisch
Seitenzahl: 412
Produktart: Kartoniert / Broschiert
Verlag: Springer Netherland
Produktinformationen "Gauss Diagram Invariants for Knots and Links"
Gauss diagram invariants are isotopy invariants of oriented knots in- manifolds which are the product of a (not necessarily orientable) surface with an oriented line. The invariants are defined in a combinatorial way using knot diagrams, and they take values in free abelian groups generated by the first homology group of the surface or by the set of free homotopy classes of loops in the surface. There are three main results: 1. The construction of invariants of finite type for arbitrary knots in non orientable 3-manifolds. These invariants can distinguish homotopic knots with homeomorphic complements. 2. Specific invariants of degree 3 for knots in the solid torus. These invariants cannot be generalized for knots in handlebodies of higher genus, in contrast to invariants coming from the theory of skein modules. 2 3. We introduce a special class of knots called global knots, in F x lR and we construct new isotopy invariants, called T-invariants, for global knots. Some T-invariants (but not all !) are of finite type but they cannot be extracted from the generalized Kontsevich integral, which is consequently not the universal invariant of finite type for the restricted class of global knots. We prove that T-invariants separate all global knots of a certain type. 3 As a corollary we prove that certain links in 5 are not invertible without making any use of the link group! Introduction and announcement This work is an introduction into the world of Gauss diagram invariants.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen