From Nonparametric Regression to Statistical Inference for Non-Ergodic Diffusion Processes
Produktnummer:
1859a45f3349494d219d364baa98e22f6e
Autor: | Marie, Nicolas |
---|---|
Themengebiete: | Fractional Brownian motion Lévy processes Model selection Nonparametric estimation PCO method Stochastic differential equations |
Veröffentlichungsdatum: | 30.10.2025 |
EAN: | 9783031956386 |
Sprache: | Englisch |
Seitenzahl: | 180 |
Produktart: | Unbekannt |
Verlag: | Springer International Publishing |
Produktinformationen "From Nonparametric Regression to Statistical Inference for Non-Ergodic Diffusion Processes"
This book is about copies-based nonparametric estimation of the drift function in stochastic differential equations (SDEs) driven by Brownian motion, a jump process, or fractional Brownian motion. While the estimators of the drift function in SDEs are classically computed from one long-time observation of the ergodic stationary solution, here the estimation framework – which is part of functional data analysis – involves multiple copies of the (non-stationary) solution observed over a short-time interval. Two kinds of nonparametric estimators are investigated for SDE models, first presented in the regression framework: the projection least squares estimator and the Nadaraya-Watson estimator. Adaptive procedures are provided for possible applications in statistical learning. Primarily intended for researchers in statistical inference for stochastic processes who are interested in the copies-based observation scheme, the book will also be useful for graduate and PhD students in probability and statistics, thanks to its multiple reminders of the requisite theory, especially the chapter on nonparametric regression.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen