Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Federated Learning

149,79 €*

Dieses Produkt erscheint am 18. September 2025

Produktnummer: 189c3228d3416f415ea9da5a2b1a911bfb
Autor: Kobayashi, Mei
Themengebiete: Data Leakage Data Poisoning Data Security Edge Computing Federated Learning Federated Transfer Learning Multiparty Computation Neural Networks Synthetic Data Transfer Learning
Veröffentlichungsdatum: 18.09.2025
EAN: 9789819692231
Sprache: Englisch
Seitenzahl: 78
Produktart: Unbekannt
Verlag: Springer Singapore
Untertitel: A Primer for Mathematicians
Produktinformationen "Federated Learning"
This book serves as a primer on a secure computing framework known as federated learning. Federated learning is the study of methods to enable multiple parties to collaboratively train machine learning/AI models, while each party retains its own, raw data on-premise, never sharing it with others. This book is designed to be accessible to anyone with a background in undergraduate applied mathematics. It covers the basics of topics from computer science that are needed to understand examples of simple federated computing frameworks. It is my hope that by learning basic concepts and technical jargon from computer science, readers will be able to start collaborative work with researchers interested in secure computing. Chap. 1 provides the background and motivation for data security and federated learning and the simplest type of neural network. Chap. 2 introduces the idea of multiparty computation (MPC) and why enhancements are needed to provide security and privacy.  Chap. 3 discusses edge computing, a distributed computing model in which data processing takes place on local devices, closer to where it is being generated. Advances in hardware and economies of scale have made it possible for edge computing devices to be embedded in everyday consumer products to process large volumes of data quickly and produce results in near real-time. Chap. 4 covers the basics of federated learning. Federated learning is a framework that enables multiple parties to collaboratively train AI models, while each party retains control of its own raw data, never sharing it with others. Chap. 5 discusses two attacks that target weaknesses of federated learning systems: (1) data leakage, i.e., inferring raw data used to train an AI model by unauthorized parties, and (2) data poisoning, i.e., a cyberattack that compromises data used to train an AI model to manipulate its output.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen