Federated Learning
Jung, Alexander
Anzahl | Stückpreis |
---|---|
Bis 1 |
0,00 €*
|
Ab 1 |
0,00 €*
|
Dieses Produkt erscheint am 28. Dezember 2025
Produktnummer:
1885fb48ac5b6140139fc2b558c41028d1
Autor: | Jung, Alexander |
---|---|
Themengebiete: | Explainable AI Federated Learning Network Security Networked Data Networked Models Privacy and data security Trustworthy AI |
Veröffentlichungsdatum: | 28.12.2025 |
EAN: | 9789819510092 |
Sprache: | Englisch |
Produktart: | Unbekannt |
Verlag: | Springer Singapore |
Untertitel: | From Theory to Practice |
Produktinformationen "Federated Learning"
How can we train powerful machine learning models together—across smartphones, hospitals, or financial institutions—without ever sharing raw data? This book delivers a compelling answer through the lens of federated learning (FL), a cutting-edge paradigm for decentralized, privacy-preserving machine learning. Designed for students, engineers, and researchers, this book offers a principled yet practical roadmap to building secure, scalable, and trustworthy FL systems from scratch.At the heart of this book is a unifying framework that treats FL as a network-regularized optimization problem. This elegant formulation allows readers to seamlessly address personalization, robustness, and fairness—challenges often tackled in isolation. You’ll learn how to structure FL networks based on task similarity, leverage graph-based methods and apply distributed optimization techniques to implement FL systems. Detailed pseudocode, intuitive explanations, and implementation-ready algorithms ensure you not only understand the theory but can apply it in real-world systems. Topics such as privacy leakage analysis, model heterogeneity, and adversarial resilience are treated with both mathematical rigor and accessibility. Whether you're building decentralized AI for regulated industries or in settings where data, users, or system conditions change over time, this book equips you to design FL systems that are both performant and trustworthy.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen