Extending the Scalability of Linkage Learning Genetic Algorithms
Produktnummer:
18124234f3879a486db9f1396f4d697968
Autor: | Chen, Ying-ping |
---|---|
Themengebiete: | Chromosome Representation Genetic Algorithms Genetic Linkage Learning Techniques Soft Computing algorithm algorithms learning model |
Veröffentlichungsdatum: | 19.11.2010 |
EAN: | 9783642066719 |
Sprache: | Englisch |
Seitenzahl: | 120 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Untertitel: | Theory & Practice |
Produktinformationen "Extending the Scalability of Linkage Learning Genetic Algorithms"
Genetic algorithms (GAs) are powerful search techniques based on principles of evolution and widely applied to solve problems in many disciplines. However, most GAs employed in practice nowadays are unable to learn genetic linkage and suffer from the linkage problem. The linkage learning genetic algorithm (LLGA) was proposed to tackle the linkage problem with several specially designed mechanisms. While the LLGA performs much better on badly scaled problems than simple GAs, it does not work well on uniformly scaled problems as other competent GAs. Therefore, we need to understand why it is so and need to know how to design a better LLGA or whether there are certain limits of such a linkage learning process. This book aims to gain better understanding of the LLGA in theory and to improve the LLGA's performance in practice. It starts with a survey of the existing genetic linkage learning techniques and describes the steps and approaches taken to tackle the research topics, including using promoters, developing the convergence time model, and adopting subchromosomes.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen