Euclidean Shortest Paths
Produktnummer:
18ab854a7522554a2ab7b48c6ebe8f8b69
Autor: | Klette, Reinhard Li, Fajie |
---|---|
Themengebiete: | Art Gallery Problems Computational Geometry Cube Curves Euclidean Shortest Path Parts Cutting Problem Rubberband Algorithm Safari Problem Simple Polygon Surface of Polytope Touring Polygons |
Veröffentlichungsdatum: | 04.11.2011 |
EAN: | 9781447122555 |
Sprache: | Englisch |
Seitenzahl: | 378 |
Produktart: | Gebunden |
Verlag: | Springer London |
Untertitel: | Exact or Approximate Algorithms |
Produktinformationen "Euclidean Shortest Paths"
This unique text/reference reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. Discussing each concept and algorithm in depth, the book includes mathematical proofs for many of the given statements. Topics and features: provides theoretical and programming exercises at the end of each chapter; presents a thorough introduction to shortest paths in Euclidean geometry, and the class of algorithms called rubberband algorithms; discusses algorithms for calculating exact or approximate ESPs in the plane; examines the shortest paths on 3D surfaces, in simple polyhedrons and in cube-curves; describes the application of rubberband algorithms for solving art gallery problems, including the safari, zookeeper, watchman, and touring polygons route problems; includes lists of symbols and abbreviations, in addition to other appendices.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen