Estimation in Semiparametric Models
Produktnummer:
184e9f5ebcd05d4e67b480a3890c6a6b76
Autor: | Pfanzagl, Johann |
---|---|
Themengebiete: | DEX boundary element method development distribution eXist estimator function functional measure median |
Veröffentlichungsdatum: | 06.04.1990 |
EAN: | 9780387972381 |
Sprache: | Englisch |
Seitenzahl: | 112 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer US |
Untertitel: | Some Recent Developments |
Produktinformationen "Estimation in Semiparametric Models"
Assume one has to estimate the mean J x P( dx) (or the median of P, or any other functional t;;(P)) on the basis ofi.i.d. observations from P. Ifnothing is known about P, then the sample mean is certainly the best estimator one can think of. If P is known to be the member of a certain parametric family, say {Po: {) E e}, one can usually do better by estimating {) first, say by {)(n)(.~.), and using J XPo(n)(;r.) (dx) as an estimate for J xPo(dx). There is an "intermediate" range, where we know something about the unknown probability measure P, but less than parametric theory takes for granted. Practical problems have always led statisticians to invent estimators for such intermediate models, but it usually remained open whether these estimators are nearly optimal or not. There was one exception: The case of "adaptivity", where a "nonparametric" estimate exists which is asymptotically optimal for any parametric submodel. The standard (and for a long time only) example of such a fortunate situation was the estimation of the center of symmetry for a distribution of unknown shape.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen