Discrete Iterations
Produktnummer:
1842eb0ee540c74167a33525e8a81446f4
Autor: | Robert, Francois |
---|---|
Themengebiete: | Eigenvalue Mathematica Matrix Newton's method algebra algorithms boundary element method convergence eXist efficiency |
Veröffentlichungsdatum: | 06.10.2011 |
EAN: | 9783642648823 |
Sprache: | Englisch |
Seitenzahl: | 198 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Untertitel: | A Metric Study |
Produktinformationen "Discrete Iterations"
a c 9 h In presenting this monograph, I would like to indicate both its orientation as well as my personal reasons for being interested in discrete iterations (that is, iterations on a generally very large,jinite set). While working in numerical analysis I have been interested in two main aspects: - the algorithmic aspect: an iterative algorithm is a mathematical entity which behaves in a dynamic fashion. Even if it is started far from a solution, it will often tend to get closer and closer. - the mathematical aspect: this consists of a coherent and rigorous analy sis of convergence, with the aid of mathematical tools (these tools are mainly the use of norms for convergence proofs, the use of matrix algebra and so on). One may for example refer to the algorithmic and mathematical aspects of Newton's method in JRn as well as to the QR algorithm for eigenvalues of matrices. These two algorithms seem to me to be the most fascinating algorithms in numerical analysis, since both show a remarkable practical efficiency even though there exist relatively few global convergence results for them.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen