Deep Reinforcement Learning
Produktnummer:
18f9c469a39ab24d42a959069a40090c0f
Autor: | Lapan, Maxim |
---|---|
Themengebiete: | Buch Data Science Deep Learning Künstliche Intelligenz Machine Learning algorithmus alphago deep neural network google ai python |
Veröffentlichungsdatum: | 25.06.2020 |
EAN: | 9783747500361 |
Auflage: | 1 |
Sprache: | Deutsch |
Seitenzahl: | 768 |
Produktart: | Kartoniert / Broschiert |
Verlag: | mitp Verlags GmbH & Co.KG |
Untertitel: | Das umfassende Praxis-Handbuch. Moderne Algorithmen für Chatbots, Robotik, diskrete Optimierung und Web-Automatisierung inkl. Multiagenten-Methoden |
Produktinformationen "Deep Reinforcement Learning"
Alle wichtigen Methoden und Algorithmen praxisnah erläutert mit Codebeispielen in PythonSelbstständig lernende Agenten programmieren für die Steuerung von Robotern, NLP in interaktiven Spielen, Chatbots und mehrDeep Q-Networks, Wertiteration, Policy Gradients, Trust Region Policy Optimization (TRPO), genetische Algorithmen, moderne Explorationsverfahren u.v.m.Reinforcement Learning ist ein Teilgebiet des Machine Learnings. Hierbei werden selbstständig lernende Agenten programmiert, deren Lernvorgang ausschließlich durch ein Belohnungssystem und die Beobachtung der Umgebung gesteuert wird.In diesem umfassenden Praxis-Handbuch zeigt Ihnen Maxim Lapan, wie Sie diese zukunftsweisende Technologie in der Praxis einsetzen. Sie lernen, wie Sie passende RL-Methoden für Ihre Problemstellung auswählen und mithilfe von Deep-Learning-Methoden Agenten für verschiedene Aufgaben trainieren wie zum Beispiel für das Lösen eines Zauberwürfels, für Natural Language Processing in Microsofts TextWorld-Umgebung oder zur Realisierung moderner Chatbots.Alle Beispiele sind so gewählt, dass sie leicht verständlich sind und Sie diese auch ohne Zugang zu sehr großer Rechenleistung umsetzen können. Unter Einsatz von Python und der Bibliothek PyTorch ermöglicht Ihnen der Autor so einen einfachen und praktischen Einstieg in die Konzepte und Methoden des Reinforcement Learnings wie Deep Q-Networks, Wertiteration, Policy Gradients, Trust Region Policy Optimization (TRPO), genetische Algorithmen und viele mehr.Es werden grundlegende Kenntnisse in Machine Learning und Deep Learning sowie ein sicherer Umgang mit Python vorausgesetzt.Aus dem Inhalt:Implementierung komplexer Deep-Learning-Modelle mit RL in tiefen neuronalen NetzenErmitteln der passenden RL-Methoden für verschiedene Problemstellungen, darunter DQN, Advantage Actor Critic, PPO, TRPO, DDPG, D4PG und mehrBauen und Trainieren eines kostengünstigen Hardware-RobotersNLP in Microsofts TextWorld-Umgebung für interaktive SpieleDiskrete Optimierung für das Lösen von ZauberwürfelnTrainieren von Agenten für Vier Gewinnt mittels AlphaGo ZeroDie neuesten Deep-RL-Methoden für ChatbotsModerne Explorationsverfahren wie verrauschte Netze und Netz-Destillation

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen