Deep Reinforcement Learning for Wireless Networks
Produktnummer:
18b66f2fb54be44376b4fe0cebb60d1196
Autor: | He, Ying Yu, F. Richard |
---|---|
Themengebiete: | Deep reinforcement learning TensorFlow caching connected vehicular networks deep learning interference alginment machine learning mobile edge computing reinforcement learning wireless networks |
Veröffentlichungsdatum: | 29.01.2019 |
EAN: | 9783030105457 |
Sprache: | Englisch |
Seitenzahl: | 71 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Deep Reinforcement Learning for Wireless Networks"
This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme. There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results.. Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen