Cursive Script Text Recognition in Natural Scene Images
Produktnummer:
18de4f78d904514c5b9e80a29eb41f122f
Autor: | Ahmed, Saad Bin Razzak, Muhammad Imran Yusof, Rubiyah |
---|---|
Themengebiete: | Arabic like Classifiers Context analysis Cursive script Deep learning Sequential learning |
Veröffentlichungsdatum: | 07.02.2020 |
EAN: | 9789811512964 |
Sprache: | Englisch |
Seitenzahl: | 111 |
Produktart: | Gebunden |
Verlag: | Springer Singapore |
Untertitel: | Arabic Text Complexities |
Produktinformationen "Cursive Script Text Recognition in Natural Scene Images"
This book offers a broad and structured overview of the state-of-the-art methods that could be applied for context-dependent languages like Arabic. It also provides guidelines on how to deal with Arabic scene data that appeared in an uncontrolled environment impacted by different font size, font styles, image resolution, and opacity of text. Being an intrinsic script, Arabic and Arabic-like languages attract attention from research community. There are a number of challenges associated with the detection and recognition of Arabic text from natural images. This book discusses these challenges and open problems and also provides insights into the complexities and issues that researchers encounter in the context of Arabic or Arabic-like text recognition in natural and document images. It sheds light on fundamental questions, such as a) How the complexity of Arabic as a cursive scripts can be demonstrated b) What the structure of Arabic text is and how to consider the features from a given text and c) What guidelines should be followed to address the context learning ability of classifiers existing in machine learning.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen