Counting Polynomial Matrices over Finite Fields
Produktnummer:
18faaa4d06384a4c9dbc4655ad03a13a15
Autor: | Lieb, Julia |
---|---|
Themengebiete: | Faltungscode Lineares System Matrixpolynom Matrizenpolynom |
Veröffentlichungsdatum: | 15.09.2017 |
EAN: | 9783958260641 |
Auflage: | 1 |
Sprache: | Englisch |
Seitenzahl: | 164 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Würzburg University Press |
Untertitel: | Matrices with Certain Primeness Properties and Applications to Linear Systems and Coding Theory |
Produktinformationen "Counting Polynomial Matrices over Finite Fields"
This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory. Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes. In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen