Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Contributions to Real-time Optimization of Process Systems under Uncertainty

49,80 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 189e781da6197e40bbb597723ce18428fa
Autor: Hernandez Rivas, Reinaldo Enrique
Themengebiete: Advanced Process Control Process Optimization Real-time Optimization
Veröffentlichungsdatum: 10.11.2022
EAN: 9783844087970
Auflage: 1
Sprache: Deutsch
Seitenzahl: 262
Produktart: Kartoniert / Broschiert
Verlag: Shaker
Produktinformationen "Contributions to Real-time Optimization of Process Systems under Uncertainty"
Real-time Optimization (RTO) has become the standard approach for improving plant performance in many petrochemical plants. In RTO, usually a first principle-based steady-state process model is used to formulate and solve a model-based optimization problem to compute the optimal operating conditions which maximize the economic performance of the plant while satisfying safety, process, and environmental constraints. However, despite its proclaimed benefits, the implementation of model-based online optimization is still limited to relatively few cases. One of the main reasons is the issue of model-plant mismatch: By using an inaccurate model, the computed operating point will be suboptimal and, in the worst scenario, the constraints can be violated. This work attempts to overcome some of the difficulties that the process industry is currently facing in the deployment of RTO with inaccurate models. This contribution builds on the main idea of iterative correction of the nominal optimization problem with the estimated plant gradients according to the principle of Modifier Adaptation (MA) algorithm and provides several methodological contributions to overcome some of its limitations. First, trust-region optimization is combined with the traditional MA approach with the goal of ensuring convergence to the plant optimum under relatively mild assumptions regarding the properties of the available model. Second, a new algorithm is presented for those cases where in addition to model uncertainties, the plant measurements are contaminated with significant levels of noise. Third, two approaches to fast RTO are investigated to combine dynamic information with the available process model resulting in a faster convergence to the plant optimum.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen