Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Construct, Merge, Solve & Adapt

160,49 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 1809e74b62813648a3815f2891360ee0de
Autor: Blum, Christian
Themengebiete: CMSA Combinatorial optimization Exact solver Hybrid algorithms ILP solver Knapsack problems Metaheuristics Minimum common string partition Minimum covering arborescence Minimum dominating set
Veröffentlichungsdatum: 19.06.2024
EAN: 9783031601026
Sprache: Englisch
Seitenzahl: 192
Produktart: Gebunden
Verlag: Springer International Publishing
Untertitel: A Hybrid Metaheuristic for Combinatorial Optimization
Produktinformationen "Construct, Merge, Solve & Adapt"
This book describes a general hybrid metaheuristic for combinatorial optimization labeled Construct, Merge, Solve & Adapt (CMSA). The general idea of standard CMSA is the following one. At each iteration, a number of valid solutions to the tackled problem instance are generated in a probabilistic way. Hereby, each of these solutions is composed of a set of solution components. The components found in the generated solutions are then added to an initially empty sub-instance. Next, an exact solver is applied in order to compute the best solution of the sub-instance, which is then used to update the sub-instance provided as input for the next iteration. In this way, the power of exact solvers can be exploited for solving problem instances much too large for a standalone application of the solver.Important research lines on CMSA from recent years are covered in this book. After an introductory chapter about standard CMSA, subsequent chapters cover a self-adaptive CMSA variant as well as a variant equipped with a learning component for improving the quality of the generated solutions over time. Furthermore, on outlining the advantages of using set-covering-based integer linear programming models for sub-instance solving, the author shows how to apply CMSA to problems naturally modelled by non-binary integer linear programming models. The book concludes with a chapter on topics such as the development of a problem-agnostic CMSA and the relation between large neighborhood search and CMSA. Combinatorial optimization problems used in the book as test cases include the minimum dominating set problem, the variable-sized bin packing problem, and an electric vehicle routing problem.The book will be valuable and is intended for researchers, professionals and graduate students working in a wide range of fields, such as combinatorial optimization, algorithmics, metaheuristics, mathematical modeling, evolutionary computing, operations research, artificial intelligence, or statistics.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen