Composite Asymptotic Expansions
Produktnummer:
1815645e9726024d14afacd94029d6f232
Autor: | Fruchard, Augustin Schafke, Reinhard |
---|---|
Themengebiete: | Gevrey expansions composite asymptotic expansion ordinary differential equation ordinary differential equations singular perturbation turning point |
Veröffentlichungsdatum: | 16.12.2012 |
EAN: | 9783642340345 |
Sprache: | Englisch |
Seitenzahl: | 161 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Produktinformationen "Composite Asymptotic Expansions"
The purpose of these lecture notes is to develop a theory of asymptotic expansions for functions involving two variables, while at the same time using functions involving one variable and functions of the quotient of these two variables. Such composite asymptotic expansions (CAsEs) are particularly well-suited to describing solutions of singularly perturbed ordinary differential equations near turning points. CAsEs imply inner and outer expansions near turning points. Thus our approach is closely related to the method of matched asymptotic expansions. CAsEs offer two unique advantages, however. First, they provide uniform expansions near a turning point and away from it. Second, a Gevrey version of CAsEs is available and detailed in the lecture notes. Three problems are presented in which CAsEs are useful. The first application concerns canard solutions near a multiple turning point. The second application concerns so-called non-smooth or angular canard solutions. Finally an Ackerberg-O’Malley resonance problem is solved.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen