Combinatorial Machine Learning
Produktnummer:
18989534b3affe4fb6a8ec228f2d785a73
Autor: | Moshkov, Mikhail Zielosko, Beata |
---|---|
Themengebiete: | Combinatorial Machine Learning Computational Intelligence Machine Learning Rough Sets |
Veröffentlichungsdatum: | 03.08.2013 |
EAN: | 9783642269011 |
Sprache: | Englisch |
Seitenzahl: | 182 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Untertitel: | A Rough Set Approach |
Produktinformationen "Combinatorial Machine Learning"
Decision trees and decision rule systems are widely used in different applicationsas algorithms for problem solving, as predictors, and as a way forknowledge representation. Reducts play key role in the problem of attribute(feature) selection. The aims of this book are (i) the consideration of the setsof decision trees, rules and reducts; (ii) study of relationships among theseobjects; (iii) design of algorithms for construction of trees, rules and reducts;and (iv) obtaining bounds on their complexity. Applications for supervisedmachine learning, discrete optimization, analysis of acyclic programs, faultdiagnosis, and pattern recognition are considered also. This is a mixture ofresearch monograph and lecture notes. It contains many unpublished results.However, proofs are carefully selected to be understandable for students.The results considered in this book can be useful for researchers in machinelearning, data mining and knowledge discovery, especially for those who areworking in rough set theory, test theory and logical analysis of data. The bookcan be used in the creation of courses for graduate students.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen