Cauchy Problem for Differential Operators with Double Characteristics
Produktnummer:
1885119d1dedd747579c7626f03008b6b3
Autor: | Nishitani, Tatsuo |
---|---|
Themengebiete: | Cauchy problem Gevrey classes IPH condition Microlocal energy estimates Non-effectively hyperbolic Tangent bicharacteristic Transition of spectral type Well/ill-posedness ordinary differential equations partial differential equations |
Veröffentlichungsdatum: | 26.11.2017 |
EAN: | 9783319676111 |
Sprache: | Englisch |
Seitenzahl: | 213 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | Non-Effectively Hyperbolic Characteristics |
Produktinformationen "Cauchy Problem for Differential Operators with Double Characteristics"
Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for di?erential operators with non-e?ectively hyperbolic double characteristics. Previously scattered over numerous di?erent publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.A doubly characteristic point of a di?erential operator P of order m (i.e. one where Pm = dPm = 0) is e?ectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is e?ectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.If there is a non-e?ectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between -Pµj and Pµj, where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insu?cient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen